281 research outputs found

    Characterization of Carbon-Contaminated B4C-Coated Optics after Chemically Selective Cleaning with Low-Pressure RF Plasma

    Get PDF
    Boron carbide (B4C) is one of the few materials that is expected to be mostly resilient with respect to the extremely high brilliance of the photon beam generated by free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern light source facilities, B4C-coated optics are subject to ubiquitous carbon contaminations. These contaminations represent a serious issue for the operation of high performance FEL beamlines due to severe reduction of photon flux, beam coherence, creation of destructive interference, and scattering losses. A variety of B4C cleaning technologies were developed at different laboratories with varying success. We present a study regarding the low-pressure RF plasma cleaning of carbon contaminated B4C test samples via inductively coupled O2/Ar, H2/Ar, and pure O2 RF plasma produced following previous studies using the same IBSS GV10x downstream plasma source. Results regarding the chemistry, morphology as well as other aspects of the B4C optical coating before and after the plasma cleaning are reported. We conclude from these comparative plasma processes that pure O2 feedstock plasma only exhibits the required chemical selectivity for maintaining the integrity of the B4C optical coating.Comment: 27 pages, 15 figure

    Imaging skins: stretchable and conformable on-organ beta particle detectors for radioguided surgery

    Get PDF
    While radioguided surgery (RGS) traditionally relied on detecting gamma rays, direct detection of beta particles could facilitate the detection of tumour margins intraoperatively by reducing radiation noise emanating from distant organs, thereby improving the signal-to-noise ratio of the imaging technique. In addition, most existing beta detectors do not offer surface sensing or imaging capabilities. Therefore, we explore the concept of a stretchable scintillator to detect beta-particles emitting radiotracers that would be directly deployed on the targeted organ. Such detectors, which we refer to as imaging skins, would work as indirect radiation detectors made of light-emitting agents and biocompatible stretchable material. Our vision is to detect scintillation using standard endoscopes routinely employed in minimally invasive surgery. Moreover, surgical robotic systems would ideally be used to apply the imaging skins, allowing for precise control of each component, thereby improving positioning and task repeatability. While still in the exploratory stages, this innovative approach has the potential to improve the detection of tumour margins during RGS by enabling real-time imaging, ultimately improving surgical outcomes

    Verification Witnesses

    Get PDF
    Over the last years, witness-based validation of verification results has become an established practice in software verification: An independent validator re-establishes verification results of a software verifier using verification witnesses, which are stored in a standardized exchange format. In addition to validation, such exchangable information about proofs and alarms found by a verifier can be shared across verification tools, and users can apply independent third-party tools to visualize and explore witnesses to help them comprehend the causes of bugs or the reasons why a given program is correct. To achieve the goal of making verification results more accessible to engineers, it is necessary to consider witnesses as first-class exchangeable objects, stored independently from the source code and checked independently from the verifier that produced them, respecting the important principle of separation of concerns. We present the conceptual principles of verification witnesses, give a description of how to use them, provide a technical specification of the exchange format for witnesses, and perform an extensive experimental study on the application of witness-based result validation, using the validators CPAchecker, UAutomizer, CPA-witness2test, and FShell-witness2test

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg

    Evapotranspiration Rates of Riparian Forests, Platte River, Nebraska, 2002–06

    Get PDF
    Evapotranspiration (ET) in riparian areas is a poorly understood component of the regional water balance in the Platte River Basin, where competing demands have resulted in water shortages in the ground-water/surface-water system. From April 2002 through March 2006, the U.S. Geological Survey, Nebraska Platte River Cooperative Hydrology Study Group, and Central Platte Natural Resources District conducted a micrometeorological study of water and energy balances at two sites in central Nebraska near Odessa and Gothenburg to improve understanding of ET rates and factors affecting them in Platte River riparian forests. A secondary objective of the study was to constrain estimates of ground-water use by riparian vegetation to satisfy ET consumptive demands, a useful input to regional ground-water flow models. Both study sites are located on large islands within the Platte River characterized by a cottonwood-dominated forest canopy on primarily sandy alluvium. Although both sites are typical of riparian forests along the Platte River in Nebraska, the Odessa understory is dominated by deciduous shrubs, whereas the Gothenburg understory is dominated by eastern redcedars. Additionally, seasonal ground-water levels fluctuated more at Odessa than at Gothenburg. The study period of April 2002 through March 2006 encompassed precipitation conditions ranging from dry to wet. This study characterized the components of the water balance in the riparian zone of each site. ET was evaluated from eddy-covariance sensors installed on towers above the forest canopy at a height of 26.1 meters. Precipitation was measured both above and below the forest canopy. A series of sensors measured soil-moisture availability within the unsaturated zone in two different vertical profiles at each site. Changes in ground-water altitude were evaluated from piezometers. The areal footprint represented in the water balance extended up to 800 meters from each tower. During the study, ET was less variable than precipitation. Annual ET fluctuated about 7 percent from the 4-year mean, ranging from about 514 to 586 millimeters per year (551 on average) at the Odessa site and 535 to 616 millimeters per year (575 on average) at the Gothenburg site. Conversely, annual precipitation fluctuated by about 35 percent from the 4-year mean, ranging from 429 to 844 millimeters per year at Odessa and 359 to 791 millimeters per year at Gothenburg. Of this precipitation, 14 to 15 percent was intercepted by the forest canopy before it could infiltrate into the soil. For the 4-year period, annual ground-water recharge from the riparian measurement zone averaged 76 and 13 millimeters at Odessa and Gothenburg, respectively, to satisfy the water balance at each site. This indicates that, from an annual perspective, ground-water reductions caused by ET may be minimal. This effect varied somewhat and primarily was affected by fluctuations in precipitation. Ground-water discharge occurred during the driest study year (2002), whereas ground-water recharge occurred from 2003 to 2005. These results do not exclude ground water as an important source of water to riparian vegetation—especially to phreatophytes that have the capability of directly using water from the saturated zone—during periods of high ET in the summer, particularly during periods of lower than normal precipitation. However, the calculations indicate that, on an annual (or longer) net-flux basis, ground-water use by riparian forests is likely to be balanced by periods of recharge from excess precipitation at other times of the year. In contrast to more arid settings, where scientific literature indicates that ground water may supply a large fraction of the water used for ET by riparian vegetation, precipitation along the Platte River of Nebraska was great enough—and generally greater than ET—that most or all of the annual ET demand was satisfied by available precipitation. Crop coefficients developed for 15-day and monthly periods from the measured data predicted ET within 3.5 percent of actual annual ET; however, daily ET was underpredicted on days of increased ET and overpredicted on days of low ET. These crop coefficients can be used to extrapolate riparian-forest ET along the Platte River in conjunction with atmospheric data from other climate stations in central Nebraska. Regression models of simple and multiple-linear relations between explanatory variables and ET indicated that the relation of ET to environmental factors was different on days with precipitation than on dry days. At Odessa, ET was affected by vapor-pressure deficit, solar radiation, leaf-area index, and depth to water regardless of precipitation conditions, but was also affected by air temperature on days without precipitation, suggesting energy limitations on ET on days without precipitation. At Gothenburg, ET was always a function of vapor-pressure deficit, solar radiation, and leaf-area index, but, as with Odessa, air temperature also became important on days without precipitation. Despite depths to ground water of less than 2 meters and phreatophytic vegetation, measured ET was substantially less than potential ET (based on the modified Penman method), consistent with plant-stomatal regulation of ET in response to environmental and meteorological factors. Although annual ET rates generally were similar, the two sites exhibited different intraannual soil-moisture regimes that had a corresponding effect on ET and vegetation vigor. Smaller seasonal declines in ground-water levels and a lack of understory shrubs at the Gothenburg site as compared to the Odessa site may explain why Gothenburg ET was comparatively greater later in the summer and was not dependent on depth to water (as identified by the multiple-linear regression model). These differences also may explain why, during years of increased precipitation, ET rates increased at Odessa but not at Gothenburg

    Localization of Interaction using Fibre-Optic Shape Sensing in Soft-Robotic Surgery Tools

    Get PDF
    Minimally invasive surgery requires real-time tool tracking to guide the surgeon where depth perception and visual occlusion present navigational challenges. Although vision-based and external sensor-based tracking methods exist, fibre-optic sensing can overcome their limitations as they can be integrated directly into the device, are biocompatible, small, robust and geometrically versatile. In this paper, we integrate a fibre Bragg grating-based shape sensor into a soft robotic device. The soft robot is the pneumatically attachable flexible (PAF) rail designed to act as a soft interface between manipulation tools and intra-operative imaging devices. We demonstrate that the shape sensing fibre can detect the location of the tools paired with the PAF rail, by exploiting the change in curvature sensed by the fibre when a strain is applied to it. We then validate this with a series of grasping tasks and continuous US swipes, using the system to detect in real-time the location of the tools interacting with the PAF rail. The overall location-sensing accuracy of the system is 64.6%, with a margin of error between predicted location and actual location of 3.75 mm

    Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Get PDF
    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin

    Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics

    Get PDF
    Altres ajuts: the research by HMF is supported by funding from the "Generalitat de Catalunya, Departament d'Empresa i Coneixement" within the "Doctorats Industrials" program (dossier no. 2014 DI 037)Boron carbide (BC)-due to its exceptional mechanical properties-is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, BC-coated optics are subject to ubiquitous carbon contaminations. These contaminations-that are presumably produced via cracking of CH and CO molecules by photoelectrons emitted from the optical components-represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of BC cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated BC test samples via an inductively coupled O/Ar and Ar/H remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the BC optical coatings and surfaces before and after the plasma cleaning process are reported

    Reflection on multilayer mirrors beam profile and coherence properties

    Get PDF
    The main advantage of Bragg reflection from a multilayer mirror as a monochromator for hard X rays, is the higher photon flux density because of the larger spectral bandpass compared with crystal lattice reflection. The main disadvantage lies in the strong modulations of the reflected beam profile. This is a major issue for micro imaging applications, where multilayer based monochromators are frequently employed to deliver high photon flux density. A subject of particular interest is the origin of the beam profile modifications, namely the irregular stripe patterns, induced by the reflection on a multilayer. For multilayer coatings in general it is known that the substrate and its surface quality significantly influence the performance of mirrors, as the coating reproduces to a certain degree the roughness and shape of the substrate. This proceedings article reviews recent experiments that indicate potential options for producing wave front preserving multilayer mirrors, as well as new details on the particular mirrors our group has extensively studied in the pas
    • …
    corecore